SECONDARY SCHOOL IMPROVEMENT PROGRAMME (SSIP) 2019

GRADE 12

SUBJECT: MATHEMATICS

LEARNER NOTES

(PAGE 1 OF 16)

SESSION NO: 4

TOPIC: EUCLIDEAN GEOMETRY (REVISION OF GR 11 CIRCLE GEOMETRY)

SECTION A: TYPICAL EXAM QUESTIONS

QUESTION 1

- 1.1 Complete:
- 1.1.1 The angle in a semi-circle is (1)
- 1.1.2 The perpendicular from the centre of a circle to a chord (1)
- 1.2 In the diagram below, AOB is a diameter of the circle centre O. OD||BC. The length of the radius is 10 units.

- 1.2.1 What is the size of \hat{C} ? State a reason. (2)
- 1.2.2 What is the size of \hat{E}_1 ? State a reason. (2)
- 1.2.3 Why is AE = EC? State a reason. (1)
- 1.2.4 If AC=16 units, calculate the length of ED. (3)

QUESTION 2

2.1 Prove the theorem that states that the angle between a tangent and a chord is equal to the angle in the alternate segment. Use the diagram below to do the necessary construction. (6)

(2)

2.2 In the figure below, RDS is a tangent to the circle centre O at D.

$$BC = DC$$
 and $\stackrel{\circ}{CDS} = 40^{\circ}$

- 2.2.1 What is the size of \hat{B}_1 . State a reason.
- 2.2.2 What is the size of \hat{D}_2 . State a reason. (2)
- 2.2.3 What is the size of \hat{C} . State a reason. (2)
- 2.2.4 Calculate the size of \hat{O}_2 State a reason. (2)
- 2.2.5 Calculate the size of \hat{O}_1 . State a reason. (2)
- 2.2.6 Calculate the size of \hat{D}_3 State reasons. (3)
- 2.2.7 Calculate the size of \hat{A} State a reason. (2)

QUESTION 3

In the diagram, O is the centre of the circle passing through A, B, C and D.

AB||CD and $\hat{B} = 20^{\circ}$

- 3.1 Calculate the size of \hat{C}_1 ? State a reason. (2)
- 3.2 Calculate the size of \hat{O}_1 ? State a reason. (2)
- 3.3 Calculate the size of \hat{D} ? State a reason. (2)
- 3.4 Calculate the size of \hat{E}_1 ? State a reason. (2)
- 3.5 Why is AOEC a cyclic quadrilateral? (1)

LOM is a diameter of circle LMT. The centre is O. TN is a tangent at T. LN \perp NP. MT is a chord. LT is a chord produced to P.

Prove that:

- MNPT is a cyclic quadrilateral 4.1
- NP = NT4.2

QUESTION 5

In the diagram below, AB is a diameter of the circle ABCD. AE is a tangent to the circle at A. $\hat{\mathbf{B}}_1 = x$.

- Prove that AB is a tangent to the circle through A, D and E. 5.1
- Prove that $\hat{C}_1 = \hat{E}$ 5.2

(7) (2)

SECTION B: NOTES ON CONTENT

REVISION OF GRADE 11 THEOREMS

THEOREM

The line segment joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.

If
$$AM=MB$$
 then $OM\perp AB$ which means that $\hat{M}_1=\hat{M}_2=90^\circ$

THEOREM CONVERSE

The perpendicular drawn from the centre of a circle to a chord bisects the chord.

If $OM \perp AB$ then AM = MB

THEOREM

The angle which an arc of a circle subtends at the centre of a circle is twice the angle it subtends at the circumference of the circle.

For all three diagrams: $\hat{O}_1 = 2\hat{C}$

THEOREM

The angle subtended at the circle by a diameter is a right angle. We say that the angle in a semi-circle is 90° .

In the diagram $\hat{C} = 90^{\circ}$

THEOREM CONVERSE

If the angle subtended by a chord at a point on the circle is 90° , then the chord is a diameter.

If $\hat{C} = 90^{\circ}$, then the chord subtending \hat{C} is a diameter.

THEOREM

An arc or line segment of a circle subtends equal angles at the circumference of the circle. We say that the angles in the same segment of the circle are equal.

In the diagram, $\hat{A} = \hat{B}$ and $\hat{C} = \hat{D}$

THEOREM

The opposite angles of a cyclic quadrilateral are supplementary (add up to 180°)

In the diagram, $\hat{A} + \hat{C} = 180^{\circ}$ and $\hat{B} + \hat{D} = 180^{\circ}$

THEOREM CONVERSE

If the opposite angles of a quadrilateral are supplementary, then the quadrilateral is a cyclic quadrilateral.

THEOREM

An exterior angle of a cyclic quadrilateral is equal to

the interior opposite angle.

If ABCD is a cyclic quadrilateral, then $\,\hat{C}_1 = A$.

THEOREM CONVERSE

If an exterior angle of a quadrilateral is equal to the interior opposite angle, then the quadrilateral is a cyclic quadrilateral.

THEOREM

A tangent to a circle is perpendicular to the radius at the point of contact.

If ABC is a tangent to the circle at the point B, then the radius $OB \perp ABC$, i.e. $\hat{B}_1 = \hat{B}_2 = 90^\circ$.

THEOREM CONVERSE

If a line is drawn perpendicular to a radius at the point where the radius meets the circle, then the line is a tangent to the circle.

If line $ABC \perp OB$ and if OB is a radius, then ABC is a tangent to the circle at B.

THEOREM

If two tangents are drawn

from the same point outside a circle, then they are equal in length.

THEOREM

The angle between a tangent to a circle and a chord drawn from the point of contact in equal to an angle in the alternate segment.

In both diagrams, $\hat{B}_2 = \hat{E}$ and $\hat{B}_1 = \hat{D}$.

THEOREM CONVERSE

If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle.

If $\hat{B}_2 = \hat{E}$ or if $\hat{B}_1 = \hat{D}$, then ABC is a tangent to the circle passing through the points B, D and E.

How to prove that a quadrilateral is cyclic

ABCD will be a cyclic quadrilateral if one of the following conditions is satisfied.

Condition 1

$$(\hat{A}_1 + \hat{A}_2) + (\hat{C}_2 + \hat{C}_3) = 180^{\circ} \text{ or } (\hat{B}_1 + \hat{B}_2) + (\hat{D}_1 + \hat{D}_2) = 180^{\circ}$$

Condition 2

$$\hat{C}_1 = \hat{A}_1 + \hat{A}_2$$

Condition 3

$$\hat{D}_1 = \hat{C}_3$$
 or $\hat{D}_2 = \hat{A}_2$ or $\hat{C}_2 = \hat{B}_1$ or $\hat{B}_2 = \hat{A}_1$

How to prove that a line is a tangent to a circle

ABC would be a tangent to the "imaginary" circle drawn through EBD if $\,\hat{B}_1 = \hat{E} \,$

PROOFS OF THEOREMS REQUIRED FOR EXAMS

THEOREM

The line drawn from the centre of a circle perpendicular to a chord bisects the chord.

Proof

Join OA and OB.

In $\triangle OAM$ and $\triangle OBM$:

(a) OA = OB

radii

(b) \hat{M}

$$\hat{\mathbf{M}}_{\scriptscriptstyle 1} = \hat{\mathbf{M}}_{\scriptscriptstyle 2} = 90^{\circ}$$

given

RHS

(c)

$$OM = OM$$

 $\therefore \triangle OAM \equiv \triangle OBM$

common

∴ AM = MB

THEOREM

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre).

Proof

Join CO and produce.

For all three diagrams:

$$\hat{O}_1 = \hat{C}_1 + \hat{A}$$

ext
$$\angle$$
 of $\triangle OAC$

But
$$\hat{C}_1 = \hat{A}$$

$$OA = OC$$
, radii

$$\therefore \hat{\mathbf{O}}_1 = 2\hat{\mathbf{C}}_1$$

Similarly, in $\triangle OCB$ $\hat{O}_2 = 2\hat{C}_2$

$$\therefore \hat{\mathbf{O}}_1 + \hat{\mathbf{O}}_2 = 2\hat{\mathbf{C}}_1 + 2\hat{\mathbf{C}}_2$$

$$\therefore \hat{\mathbf{O}}_1 + \hat{\mathbf{O}}_2 = 2(\hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_2)$$

$$\therefore$$
 AÔB = 2AĈB

For the third diagram:

$$\therefore \hat{\mathbf{O}}_2 - \hat{\mathbf{O}}_1 = 2\hat{\mathbf{C}}_2 - 2\hat{\mathbf{C}}_1$$

$$\therefore \hat{O}_2 - \hat{O}_1 = 2(\hat{C}_2 - \hat{C}_1)$$

THEOREM

The opposite angles of a cyclic quadrilateral are supplementary (add up to 180°).

Proof

Join AO and OC.

$$\hat{O}_1 = 2\hat{D}$$

$$\angle$$
 at centre = $2 \times \angle$ at circ

$$\hat{O}_2 = 2\hat{B}$$

$$\angle$$
 at centre = $2 \times \angle$ at circ

$$\hat{\mathbf{O}}_1 + \hat{\mathbf{O}}_2 = 2\hat{\mathbf{D}} + 2\hat{\mathbf{B}}$$

and
$$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$$
 \angle 's round a point

$$\therefore 360^{\circ} = 2(\hat{D} + \hat{B})$$

$$\therefore 180^{\circ} = \hat{D} + \hat{B}$$

THEOREM

The angle between a tangent to a circle and a chord drawn from the point of contact is equal to the angle in the alternate segment.

Proof

Draw diameter BOF and join EF

$$\hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2 = 90^{\circ}$$

 $\tan \perp \operatorname{rad}$

$$\hat{E}_1 + \hat{E}_2 = 90^{\circ}$$

 $\hat{E}_1 + \hat{E}_2 = 90^{\circ}$ \angle in a semi-circle

But
$$\hat{\mathbf{B}}_1 = \hat{\mathbf{E}}_1$$

arc FD subt = \angle 's

$$\therefore \hat{\mathbf{B}}_2 = \hat{\mathbf{E}}_2$$

Draw diameter BOF and join FD

$$\hat{B}_{1} = 90^{\circ}$$

 $tan \perp rad$

$$\hat{D}_1 = 90^{\circ}$$

∠ in a semi-circle

$$\hat{B}_2 = \hat{D}_2$$

arc FE subt = \angle 's

Now
$$\hat{B}_1 = \hat{D}_1 = 90^{\circ}$$
 and $\hat{B}_2 = \hat{D}_2$

$$\therefore \hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2 = \hat{\mathbf{D}}_1 + \hat{\mathbf{D}}_2$$

$$\hat{ABE} = \hat{BDE}$$

SECTION C: HOMEWORK QUESTIONS

In the diagram below, M is the centre of the circle. D, E, F and G are points on the circle. If $\hat{F}_1 = 10^\circ$ and $\hat{D}_2 = 50^\circ$, calculate, with reasons, the size of:

- \hat{D}_1
- (2)
- $1.2 \quad \hat{M}_1$
- (2)
- 1.3 \hat{F}_{2}
- (2)
- 1.4 Ĝ
- (2)
- \hat{E}_1
- (2)

QUESTION 2

In the diagram below, QP is a tangent to a circle with centre O. RS is a diameter of the circle and RQ is a straight line. T is a point on the circle. PS bisects $T\hat{P}Q$ and $S\hat{P}Q = 22^{\circ}$. Calculate the following, giving reasons:

- 2.1 \hat{P}_2
- (2)
- \hat{R}_2
- (2)
- 2.3 $\hat{P}_3 + \hat{P}_4(3)$
- \hat{R}_1
- (4)
- \hat{O}_1
- (3)
- \hat{Q}_2
- (3)

ALB is a tangent to circle LMNP. ALB \parallel MP. Prove that:

- 3.1 LM = LP (4)
- 3.2 LN bisects MNP (4)
- 3.3 LM is a tangent to circle MNQ (4)

QUESTION 4

EC is a diameter of circle DEC. EC is produced to B. BD is a tangent at D. ED is produced to A and $AB \perp BE$.

Prove that:

- 4.1 ABCD is a cyclic quadrilateral. (4)
- $\hat{A}_1 = \hat{E} \tag{3}$
- 4.3 BD = BA (5)
- $4.4 \qquad \hat{C}_2 = \hat{C}_3$

SECTION D: SOLUTIONS FOR SECTION A

QUESTION 1

1.1.1	equal to 90°	✓ answer (1)
1.1.2	bisects the chord	✓ answer (1)
1.2.1	$\hat{C} = 90^{\circ}$ Angle in semi-circle	✓ answer
	8	✓ reason (2)
1.2.2	$\hat{E}_1 = 90^{\circ}$ Corr angles equal	✓ answer
		✓ reason (2)
1.2.3	Perp from centre to chord	✓ answer (1)
1.2.4	AE = 8 units Given	\checkmark AE = 8 units
	$\therefore OE^2 = 10^2 - 8^2$	\checkmark OE = 6 units
	$\therefore OE = 6 \text{ units}$	\checkmark ED = 4 units (3)
	But $OD = AO = 10$ units	
	\therefore ED = 4 units	

2.1	F	✓ construction
	E	$\checkmark \hat{B}_1 + \hat{B}_2 = 90^{\circ}$
		$\checkmark \hat{E}_1 + \hat{E}_2 = 90^\circ$
		$\checkmark \hat{B}_1 = \hat{E}_1$
	, i D	$\oint \hat{\mathbf{B}}_2 = \hat{\mathbf{E}}_2$
		✓ reasons (6)
	A B C	
	Draw diameter BOF and join EF	
	$\hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2 = 90^{\circ} \dots $ $\tan \perp \mathrm{rad}$	
	$\hat{E}_1 + \hat{E}_2 = 90^{\circ}$ \angle in semi-circle	
	But $\hat{\mathbf{B}}_1 = \hat{\mathbf{E}}_1$ FD subt = $\angle s$	
	$\therefore \hat{\mathbf{B}}_2 = \hat{\mathbf{E}}_2$	
2.2.1	$\hat{B}_1 = 40^{\circ}$ Tan-chord	✓ $\hat{B}_1 = 40^\circ$
		✓ reason (2)

2.2.2	$\hat{D}_2 = 40^{\circ}$ Angles opp equal sides	$\checkmark \hat{D}_2 = 40^{\circ}$
		✓ reason (2)
2.2.3	$\hat{C} = 100^{\circ}$ Sum of the \angle 's of a \triangle	✓ Ĉ=100°
		✓ reason (2)
2.2.4	$\hat{O}_2 = 200^{\circ}$ \angle at centre = $2 \times \angle$ at circle	✓ Ô ₂ = 200°
		✓ reason (2)
2.2.5	$\hat{O}_1 = 160^{\circ}$ \angle 's round a point	$\checkmark \hat{O}_1 = 160^{\circ}$
		✓ reason (2)
2.2.6	$\hat{D}_3 + \hat{B}_2 + \hat{O}_1 = 180^\circ$ Sum of the \angle 's of a \triangle	$\checkmark \hat{D}_3 + \hat{B}_2 + \hat{O}_1 = 180^\circ$
	$\therefore \hat{D}_3 + \hat{B}_2 + 160^\circ = 180^\circ$	$\checkmark \hat{D}_3 = \hat{B}_2$
	$\therefore \hat{\mathbf{D}}_3 + \hat{\mathbf{B}}_2 = 20^{\circ}$	$\checkmark \hat{D}_3 = 10^{\circ} \tag{3}$
	But $\hat{D}_3 = \hat{B}_2$ Angles opp equal radii	
	$\therefore \hat{\mathbf{D}}_3 + \hat{\mathbf{D}}_3 = 20^{\circ}$	
	$\therefore 2\hat{D}_3 = 20^{\circ}$	
	$\therefore \hat{D}_3 = 10^{\circ}$	
2.2.7	$\hat{A} = 80^{\circ}$ Opp \angle 's cyclic quad	✓ Â = 80°
	or \angle at centre = $2 \times \angle$ at circle	✓ reason (2)

3.1	$\hat{C}_1 = 20^{\circ}$ Alt angles equal	$\checkmark \hat{C}_1 = 20^{\circ}$
		✓ reason (2)
3.2	$\hat{O}_1 = 40^{\circ}$ \angle at centre = $2 \times \angle$ at circle	✓ Ô ₁ = 40°
		✓ reason (2)
3.3	$\hat{D} = 20^{\circ}$ \(\triangle \text{ at centre} = 2 \times \triangle \text{ at circle}	✓ D = 20°
	or	✓ reason (2)
	Angles in same segment	
3.4	$\hat{E}_1 = 40^{\circ}$ Ext \angle of triangle	$\checkmark \hat{E}_1 = 40^\circ$
		✓ reason (2)
3.5	$\hat{E}_1 = \hat{O}_1 = 40^{\circ}$	✓ answer (1)

4.1	$\hat{N}_1 + \hat{N}_2 = 90^{\circ}$ Given	$\checkmark \hat{N}_1 + \hat{N}_2 = 90^{\circ}$
	$\hat{T}_3 = 90^{\circ}$ \(\triangle \text{in semi-circle}	\checkmark $\hat{T}_3 = 90^\circ$
	$\therefore \hat{\mathbf{N}}_1 + \hat{\mathbf{N}}_2 = \hat{\mathbf{T}}_3$	$\checkmark \hat{N}_1 + \hat{N}_2 = \hat{T}_3$
	:. MNPT is a cyclic quad Ext \angle = int opp \angle	✓ reasons (4)
4.2	$\hat{T}_1 = \hat{T}_4$ Vertically opp angles	$\checkmark \hat{\mathbf{T}}_{1} = \hat{\mathbf{T}}_{4}$
	$\hat{T}_4 = \hat{M}_1$ Tan chord	\checkmark $\hat{T}_4 = \hat{M}_1$
	$\hat{\mathbf{M}}_{1} = \hat{\mathbf{P}}$ Ext \angle of cyclic quad	\checkmark $\hat{\mathbf{M}}_1 = \hat{\mathbf{P}}$
	$\therefore \hat{\mathbf{T}}_{_{1}} = \hat{\mathbf{P}}$	\checkmark $\hat{T}_1 = \hat{P}$
	$\therefore NP = NT \text{Sides opp equal } \angle s$	✓ reasons (5)

5.1	$\hat{A}_1 + \hat{A}_2 = 90^\circ$	Tan ⊥ radius	$\checkmark \hat{A}_1 + \hat{A}_2 = 90^\circ$	
	$\hat{\mathbf{A}}_2 = x$	Tan-chord	$\checkmark \hat{A}_2 = x$	
	$\therefore \hat{\mathbf{A}}_1 + x = 90^{\circ}$	$\checkmark \hat{A}_1 = 90^\circ - x$		
	$\therefore \hat{\mathbf{A}}_1 = 90^{\circ} - x$	$\checkmark \hat{A}_1 + \hat{A}_2 + \hat{B}_1 + \hat{E} = 180^\circ$		
	$\hat{A}_1 + \hat{A}_2 + \hat{B}_1 + \hat{E} = 18$	$\checkmark \hat{E} = 90^{\circ} - x$		
	$\therefore 90^{\circ} + x + \hat{\mathbf{E}} = 180^{\circ}$	$\checkmark \hat{A}_1 = \hat{E}$		
	$\therefore \hat{\mathbf{E}} = 90^{\circ} - x$	✓ reasons	(7)	
	$\therefore \hat{\mathbf{A}}_1 = \hat{\mathbf{E}}$			
	:. AB is a tangent to			
	since ∠ between line			
5.2	$\hat{\mathbf{C}}_1 = \hat{\mathbf{A}}_1$	Ext ∠ of cyclic quad	$\checkmark \hat{C}_1 = \hat{A}_1$	·
	$\hat{A}_1 = \hat{E} = 90^\circ - x$	Proved	$\checkmark \hat{A}_1 = \hat{E} = 90^\circ - x$	(2)
	$\therefore \hat{\mathbf{C}}_1 = \hat{\mathbf{E}}$			

